

Reg. No.:			8810	100

Question Paper Code: 71709

B.E./B.Tech, DEGREE EXAMINATION, APRIL/MAY 2017.

Seventh Semester

Electronics and Communication Engineering

EC 6009 — ADVANCED COMPUTER ARCHITECTURE

(Regulations 2013)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- Define spatial and temporal locality. 1.
- What is dependability? 2.
- List the major advantages of dynamic scheduling using Tomasulo's approach. 3.
- What is data hazard? 4.

10.

- What are the omissions in the SIMD extension instruction set? 5.
- Describe the similarities and differences between Multimedia SIMD computers 6. and GPU.
- What is multicore architecture? 7.
- What is the major disadvantage of DSM architecture? 8.
- What the similarities and differences between SCSI and IDE? 9.
- Explain the need to implement memory as a hierarchy.

PART B — $(5 \times 16 = 80 \text{ marks})$

1.	(a)		Explain in detail about trends in power and energy in integrated enemts with suitable example. (16)							
			Or							
	(b)	(i)	Suppose we have made the following measurements:							
	,	(-)	Frequency of FP operations = 25%							
			Average CPI of FP operations = 4.0							
		*	Avenge CPI of other instructions = 1.33							
			Frequency of FPSQR = 2%							
			CPI of FPSQR = 20							
			Assume that the two design alternatives are to decrease the CI	PI of						
			FPSOR to 2 or to decrease the average CPI of all FP operation	is to						
			2.5. Compare these two design alternatives using the proce	ssor						
	•		performance equation.	(6)						
		(ii)	Discuss about the guidelines and principles that are useful	I in						
			design and evaluate the performance of computer systems vexample.	(10)						
12 .	(a)	(i)	Describe the basic compiler techniques for exploiting instruc							
			level parallelism.	(10)						
	•	(ii)	Briefly compare the hardware and software speculation.	(6)						
			Or							
	(b)	(i)	Explain the methods of exploiting LIP using VLIW processor.	(8)						
		(ii)	Discuss the important limitations to ILP.	(8)						
13	. (a)	Exp	plain Data level parallelism in Vector architecture in detail.	(16)						
			Or							
	(b)	Dis	scuss GPU architecture with neat diagram.	(16)						
14	. (a)	Wi	th neat diagram, explain the distributed shared memory architectu	ıre.						
	. , ,			(16)						
	1,6									
	- (b)	(i)	Explain about synchronization techniques used in multiproce							
			system.	(10)						
*	5	(ii)	Discuss about models of memory consistency.	(6)						
15	i. (a)) De	scribe various basic cache optimization techniques with example.	(16)						
			Or							
*	(b)	(i)	Briefly describe about various RAID levels with diagram.	(8)						
		(ii)		(8)						
		P8 - 5								